4.1 The Coordinate Plane

Goal Plot points in a coordinate plane.

VOCABULARY

Coordinate plane

Origin

x-axis
y-axis

Ordered pair
x-coordinate
y-coordinate

Quadrant

Scatter plot

Plot the points $A(-2,3), B(3,-4)$, and $C(0,-2)$ in a coordinate plane.
To plot the point $A(-2,3)$, start at the
\qquad . Move 2 units to the \qquad and 3 units \qquad .

To plot the point $B(3,-4)$, start at the
\qquad . Move 3 units to the \qquad and
4 units \qquad .

To plot the point $C(0,-2)$, start at the . Move 0 units to the \qquad and

2 units \qquad .

Example 2 Identify Quadrants
Name the quadrants the points $D(-2,-9)$ and $E(12,4)$ are in.
The point $D(-2,-9)$ is in Quadrant \qquad because its x - and y-coordinates are both \qquad .

The point $E(12,4)$ is in Quadrant \qquad because its x - and y-coordinates are both \qquad .
(Checkpoint Plot the points in the same coordinate plane.

1. $A(-3,-2)$
2. $B(4,0)$
3. $C(1,4)$
4. $D(-3,2)$

Name the quadrant the point is in.

5. $(-6,7)$	$6 .(-6,-7)$	7. $(6,-7)$	8. $(6,7)$

NCAA Basketball Teams The number of NCAA men's college basketball teams is shown in the table.

Year	1995	1996	1997	1998	1999	2000
Men's teams	868	866	865	895	926	932

a. Make a scatter plot of the data.
b. Describe the pattern of the number of men's basketball teams.

Solution

a. Let M represent \qquad . Let t represent
\qquad -

Because you want to see how the number of teams changed over time, put t on the \qquad axis and M on the \qquad axis.

Choose a scale. Use a break in the scale for the number of teams to focus on the values between \qquad and \qquad .

NCAA Men's Basketball Teams

b. From the scatter plot, you can see that the number of men's teams in the NCAA was \qquad for three years and then began to \qquad .

4.2 Graphing Linear Equations

Goal Graph a linear equation using a table of values.

VOCABULARY

Linear equation

Solution of an equation

Function form

Graph of an equation

Example 1 Check Solutions of Linear Equations

Determine whether the ordered pair is a solution of $2 x+3 y=-6$.
a. $(3,-4)$
b. $(-4,1)$

Solution

a.

Answer (3, -4) \qquad a solution of the equation $2 x+3 y=-6$.
b.
$2 x+3 y=-6 \quad$ Write original equation.

Answer ($-4,1$) \qquad a solution of the equation $2 x+3 y=-6$.
(V) Checkpoint Determine whether the ordered pair is a solution of $-2 x+y=3$.

1. $(0,3)$	2. $(1,1)$	3. $(1,5)$

Example 2 Find Solutions of Linear Equations
Find three ordered pairs that are solutions of $-5 x+y=-2$.

1. Rewrite the equation in function form to make it easier to substitute values into the equation.
$-5 x+y=-2 \quad$ Write original equation.

$$
y=
$$

\qquad Add \qquad to each side.
2. Choose any value for x and substitute it into the equation to find the corresponding y-value. The easiest x-value is \qquad .

$$
\begin{array}{ll}
y=5\left(_\right)-2 & \text { Substitute __ for } x . \\
y=_ & \text {Simplify. The solution is }
\end{array}
$$

\qquad .
3. Select a few more values of x and make a table to record the solutions.

\boldsymbol{x}	0	1	2	3	-1	-2
\boldsymbol{y}						

Answer \qquad , \qquad , and \qquad are three solutions of $-5 x+y=-2$.

GRAPHING A LINEAR EQUATION

Step 1 Rewrite the equation in \qquad form, if necessary.

Step 2 Choose a few values of x and make a \qquad .
Step 3 Plot the points from the table of values. A line through these points is the \qquad of the equation.

Example 3 Graph a Linear Equation

Use a table of values to graph the equation $x+4 y=4$.

1. Rewrite the equation in function form by solving for y.

$$
\begin{align*}
x+4 y & =4 & & \text { Write original equation. } \\
4 y & =\ldots+4 & & \text { Subtract ___ from each side. } \\
y & = & & \text { Divide each side by ___. }
\end{align*}
$$

2. Choose a few values of x and make a table of values.

When graphing a linear equation, try choosing values of x that include negative values, zero, and positive values to see how the graph behaves to the left and right of the y-axis.

x	-4	0	4
\boldsymbol{y}			

You have found three solutions.
(-4, \qquad), (0, \qquad), (4, \qquad)
3. Plot the points and draw a line through them.

(Checkpoint Complete the following exercise.
4. Use a table of values to graph the equation $x-2 y=1$.

4.3 Graphing Horizontal and Vertical Lines

Goal Graph horizontal and vertical lines.

VOCABULARY

Constant function

EQUATIONS OF HORIZONTAL AND VERTICAL LINES

In the coordinate plane, the graph of $y=b$ is a line.

In the coordinate plane, the graph of $x=a$ is a line.

Example 1 Graph the Equation $y=b$

Graph the equation $y=-3$.
The equation does not have x as a variable. The y-coordinate is always \qquad , regardless of the value of x. Some points that are solutions of the equation are:
$(-3$, \qquad), (0 , \qquad), and (3, \qquad)
The graph of $y=-3$ is a \qquad line \qquad units \qquad the \qquad .

Graph the equation $x=2$.

Solution

The equation does not have y as a variable. The x-coordinate is always \qquad , regardless of the value of y. Some points that are solutions of the equation are:
\qquad , -3), \qquad , 0), and (\qquad , 3)

Answer The graph of $x=2$ is a \qquad line \qquad units to the \qquad of the \qquad .

Example 3 Write an Equation of a Line

Write the equation of the line in the graph.
a.

b.

Solution

a. The graph is a \qquad line. The x-coordinate is always \qquad . The equation of the line is \qquad -
b. The graph is a \qquad line. The y-coordinate is always \qquad . The equation of the line is \qquad -
(V) Checkpoint Complete the following exercises.

Example 4 Write a Constant Function

Tree Trunks The graph shows the diameter of a tree trunk over a 6-week period. Write an equation to represent the diameter of the tree trunk for this period. What is the domain of the function? What is the range?

Diameter of a Tree Trunk

Solution

From the graph, you can see that the diameter was about inches throughout the 6-week period. Therefore, the diameter D during this time t is $D=$ \qquad . The domain is \qquad . The range is \qquad

4.4 Graphing Lines Using Intercepts

Goal Find the intercepts of the graph of a linear equation and then use them to make a quick graph of the equation.

VOCABULARY

x-intercept
y-intercept

Example 1 Find x - and y-Intercepts

Find the x - and y-intercepts of the graph of the equation $-3 x+4 y=12$.

Solution

To find the x-intercept, substitute \qquad for y and solve for x.

$-3 x+4 y$	$=12$		Write original equation.
$-3 x+4(\ldots)$	$=12$		Substitute for y.
$-\quad$	$=12$		Simplify.
x	$=$		Solve for x.

To find the y-intercept, substitute \qquad for x and solve for y.
$-3 x+4 y=12 \quad$ Write original equation.
$-3(\ldots)$
\qquad $+4 y=12 \quad$ Substitute \qquad for x.
\qquad $=12$ Simplify.
$y=$ \qquad Solve for y.
Answer The x-intercept is \qquad . The y-intercept is \qquad .
(Checkpoint Complete the following exercise.

1. Find the x-intercept and the y-intercept of the graph of the equation $2 x-5 y=10$.

The Quick Graph process works because only two points are needed to determine a line.

MAKING A QUICK GRAPH

Step 1 Find the \qquad .

Step 2 Draw a coordinate plane that includes the \qquad .
Step 3 Plot the \qquad and draw a line through them.

Example 2 Make a Quick Graph

Graph the equation $9 x+6 y=18$.

Solution

1. Find the intercepts.

$9 x+6 y=18$	Write original equation
$\begin{aligned} 9 x+6\left(_\right) & =18 \\ x & = \end{aligned}$	Substitute \qquad for y. The x-intercept is \qquad
$9 x+6 y=18$	Write original equation.
$9(\ldots)+6 y=18$	Substitute __ for
$y=$	The y-intercept is

2. Draw a coordinate plane that includes the points (\qquad , \qquad) and (\qquad , \qquad).
3. Plot the points (\qquad ,) and (, \qquad) and draw a line through them.
(Checkpoint Complete the following exercise.
4. Graph the equation $-4 x+5 y=20$.

Example 3 Choose Appropriate Scales

When you

 make a quick graph, find the intercepts before you draw the coordinate plane. This will help you find an appropriate scale on each axis.Graph the equation $y=5 x+35$.

Solution

1. Find the intercepts.

$y=5 x+35$	Write original equation.
$-5 x+35$	Substitute __ for y .
$\ldots=5 x$	Subtract ___ from each side.
$=x$	Divide each side by \qquad . The x-intercept is \qquad .
$y=5 x+35$	Write original equation.
$y=5(\ldots)+35$	Substitute __ for x.
$y=$	Simplify. The y-intercept is ___.

2. Draw a coordinate plane that includes the points \qquad , \qquad) and (\qquad ,__).). With these values, it is reasonable to use tick marks at
\qquad intervals .
3. Plot the points \qquad , \qquad) and (\qquad ,) and draw a line through them.

4.5 The Slope of a Line

Goal Find the slope of a line.

VOCABULARY

Slope

Example 1 The Slope Ratio

Find the slope of a ramp that has a vertical rise of 3 feet and a horizontal run of 18 feet. Let m represent the slope.

Vertical Rise $=3$ feet

$$
\text { Horizontal Run }=18 \text { feet }
$$

Solution

Answer The slope of the ramp is \qquad .

THE SLOPE OF A LINE

The slope m of a line that passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
formula, x_{1} is read as " x sub one" and y_{2} as " y sub two."

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } \square}{\text { change in } \square}
$$

\square

Find the slope of the line that passes through the points (1, 2) and ($-2,-3$).

Solution Let $\left(x_{1}, y_{1}\right)=(1,2)$ and $\left(x_{2}, y_{2}\right)=(-2,-3)$.

Answer The slope of the line is . The line \qquad from left to right. The slope is \qquad .

Example 3

Zero Slope

Find the slope of the line passing through the points $(-2,-3)$ and $(4,-3)$.

Solution Let $\left(x_{1}, y_{1}\right)=(-2,-3)$ and $\left(x_{2}, y_{2}\right)=(4,-3)$.

Answer The slope of the line is \qquad . The line is \qquad .

Find the slope of the line passing through the points $(-1,-4)$ and ($-1,-2$).

Solution

Let $\left(x_{1}, y_{1}\right)=(-1,-4)$ and $\left(x_{2}, y_{2}\right)=(-1,-2)$.

Division by \qquad is \qquad .

Answer Because division by \qquad is \qquad , the slope is
\qquad . The line is \qquad .
. Checkpoint Find the slope of the line passing through the points. Then state whether the slope of the line is positive, negative, zero, or undefined.

1. $(-5,2),(7,-2)$	2. $(0,0),(-9,0)$
3. $(-7,-8),(-7,8)$	$4 .(2,-4),(8,6)$

4.6 Direct Variation

Goal Write and graph equations that represent direct variation.

VOCABULARY

Direct variation

Constant of variation

Example $1 \quad$ Write a Direct Variation Model

The model for direct variation $y=k x$ is read as " y varies directly with x."

The variables x and y vary directly. One pair of values is $x=7$ and $y=21$.
a. Write an equation that relates x and y.
b. Find the value of y when $x=4$.

Solution

a. Because x and y vary \qquad , the equation is of the form
\qquad .

$$
\begin{array}{rlrl}
y & =k x \\
& =k\left(_\right) & & \begin{array}{l}
\text { Write model for direct variation. } \\
\text { Substitute __ for } x \text { and } \quad \text { for } y .^{Z}
\end{array}=k
\end{array} \quad \begin{array}{ll}
\text { Divide each side by __. }
\end{array}
$$

Answer An equation that relates x and y is \qquad .
b. $\quad y=3($ \qquad) Substitute \qquad for \boldsymbol{x}.
$y=$ \qquad Simplify.

Answer When $x=4, y=$ \qquad .

PROPERTIES OF GRAPHS OF DIRECT VARIATION MODELS

- The graph of $y=k x$ is a line through the \qquad .
- The slope of the graph of $y=k x$ is \qquad .

k is negative. $\quad k$ is positive.

Example 2 Graph a Direct Variation Model

Graph the equation $y=-x$.

1. Plot a point at the \qquad .
2. Find a second point by choosing any value of x and substituting it into the equation to find the corresponding y-value. Use the value -3 for x.

$y=-x$	
$y=-\left(_\right)$	Write original equation.
Substitute__ for x.	

$y=\quad$ Simplify
The second point is (\qquad , \qquad).
3. Plot the second point and draw a line through the \qquad and the second point.

(. Checkpoint The variables x and y vary directly. Use the given values to write an equation that relates x and y.

1. $x=6, y=30$	2. $x=8, y=-20$	$3 . x=3.6, y=1.8$

4.7 Graphing Lines Using Slope-Intercept Form

Goal Graph a linear equation in slope-intercept form.

VOCABULARY

Slope-intercept form

Parallel lines

SLOPE-INTERCEPT FORM OF THE EQUATION OF A LINE

The linear equation $y=m x+b$ is written in slope-intercept form, where \qquad is the slope and \qquad is the y-intercept.

Example 1 Find the Slope and y-Intercept

Find the slope and y-intercept of $-3 x-y=2$.
Solution Rewrite the equation in slope-intercept form.

$$
\begin{array}{rlrl}
-3 x-y & =2 & & \text { Write original equation. } \\
-y & =_+2 & & \text { Add to each side. } \\
& =\square & & \text { Divide each side by } \\
m=\ldots
\end{array}
$$

Answer The slope is \qquad . The y-intercept is \qquad .

Graph the equation $y=2 x-3$.

1. Find the slope, \qquad , and the y-intercept, \qquad .
2. Plot the point $(0, b)$ when b is \qquad
3. Use the slope to locate a second point on the line.

$$
m=\frac{\square}{\square}=\frac{\text { rise }}{\text { run }} \rightarrow
$$

$\frac{\text { move } \square \text { units up }}{\text { move } \square \text { unit right }}$
. .

4. Draw a line through the two points.
(Checkpoint Find the slope and y-intercept of the equation.

1. $y=4-3 x$	2. $2 x+y=-3$	$3.4 y=3 x-8$

Graph the equation in slope-intercept form.
4. $y=x-2$

5. $y=-\frac{1}{4} x+1$

Which of the following lines are parallel?
line $a:-2 x+y=1 \quad$ line $b: 2 x+y=-1 \quad$ line $c: 2 x-y=3$

Solution

1. Rewrite each equation in slope-intercept form.
line a: $y=$ \qquad line $b: y=$ \qquad line $c: y=$ \qquad
2. Identify the slope of each equation.

The slope of line a is \qquad . The slope of line b is \qquad . The slope of line c is \qquad .
3. Compare the slopes.

Lines \qquad and \qquad are parallel because each has a slope of \qquad .
Line \qquad is not parallel to either of the other two lines because it has a slope of \qquad .
Check The graph gives you a visual check. It shows that line b \qquad each of the two parallel lines.

Answer Lines \qquad and \qquad are parallel.

(V) Checkpoint Which of the following lines are parallel?

6. line a: $4 x-3 y=6$
line $b:-8 x+6 y=18$
line $c: 4 x+3 y=8$

4.8 Functions and Relations

Goal Decide whether a relation is a function and use function notation.

VOCABULARY

Relation

Function

Function notation

Linear function

Example 1 Identify Functions

Decide whether the relation is a function. If it is a function, give the domain and the range.
a. Input
Output

b. Input Output

Solution

a. The relation \qquad a function because \qquad
\qquad .
b. The relation \qquad a function. For each \qquad there is . The domain of the function is
\qquad . The range is \qquad .

VERTICAL LINE TEST FOR FUNCTIONS

A graph is a function if no \qquad line intersects the graph at
\qquad point.

\qquad
\qquad
\qquad
\qquad

Example 2 Use the Vertical Line Test

Use the vertical line test to determine whether the graph represents a function.
a.

b.

Solution

a. \qquad vertical line can be drawn to intersect the graph more than once. The graph \qquad .
b. \qquad vertical line can be drawn to intersect the graph more than once. The graph \qquad .
(Checkpoint Decide whether the relation is a function. If it is a function, give the domain and the range.

Use the vertical line test to determine whether the graph represents a function.

Example 3 Evaluate a Function

You don't have to use f to name a function. Just as you can use any letter as a variable, you can use any letter to name a function.

Evaluate $g(x)=-2 x+3$ when $x=4$.

Solution

$$
g(x)=-2 x+3 \quad \text { Write original function. }
$$

Answer When $x=4, g(x)=$ \qquad .

Graph $f(x)=\frac{3}{4} x-2$.

1. Rewrite the function as $y=$ \qquad

2. Draw a line through the two points.
(v) Checkpoint Evaluate the function for the given value of the variable.

5. $f(x)=-7 x+3$ when	6. $f(x)=x^{2}-5$ when $x=2$
$x=-3$	

Graph the linear function.

