

Goal Plot points in a coordinate plane.

Coordinate plane
 Drigin
 ⟨-axis ∕-axis
 Ordered pair
 k-coordinate
 /-coordinate
 Quadrant
 Scatter plot
Scatter plot

Plot Points in a Coordinate Plane Example 1 Plot the points A(-2, 3), B(3, -4), and C(0, -2) in a coordinate plane. To plot the point A(-2, 3), start at the _____. Move 2 units to the _____ and 3 3 units . To plot the point B(3, -4), start at the . Move 3 units to the _____ and 4 units -3 -13 1 х To plot the point C(0, -2), start at the 3 ____. Move 0 units to the _____ and 2 units

Name the quadrant the point is in.

Example 3

NCAA Basketball Teams The number of NCAA men's college basketball teams is shown in the table.

Year	1995	1996	1997	1998	1999	2000
Men's teams	868	866	865	895	926	932

a. Make a scatter plot of the data.

b. Describe the pattern of the number of men's basketball teams.

Solution

a. Let *M* represent ______. Let *t* represent

Because you want to see how the number of teams changed over time, put *t* on the ______ axis and *M* on the ______ axis.

Choose a scale. Use a break in the scale for the number of teams to focus on the values between _____ and ____.

NCAA Men's Basketball Teams

b. From the scatter plot, you can see that the number of men's teams in the NCAA was ______ for three years and then began to _____.

Graphing Linear Equations

Goal Graph a linear equation using a table of values.

VOCABULARY		
Linear equation		
Solution of an equation	 	
Function form	 	
Graph of an equation	 	

Example 1 Check Solutions of Linear Equations				
Determine whether the ordered pair is a solution of $2x + 3y = -6$.				
a. (3, -4)	b. (-4, 1)			
Solution				
a. $2x + 3y = -6$	Write original equation.			
2 () + 3 () [?] = −6	Substitute for x and for y.			
6	Simplify statement.			
Answer (3, -4) a solut	ion of the equation $2x + 3y = -6$.			
b. $2x + 3y = -6$	Write original equation.			
2 () + 3 () ≟ −6	Substitute for x and for y.			
	Simplify statement.			
Answer $(-4, 1)$ a solution of the equation $2x + 3y = -6$.				

Checkpoint Determine whether the ordered pair is a solution of -2x + y = 3.

1. (0, 3)	2. (1, 1)	3. (1, 5)

Example 2 Find Solutions of Linear Equations

Find three ordered pairs that are solutions of -5x + y = -2.

1. Rewrite the equation in function form to make it easier to substitute values into the equation.

-5x + y = -2 Write original equation.

y = _____ Add to each side.

2. Choose any value for x and substitute it into the equation to find the corresponding *y*-value. The easiest *x*-value is .

Substitute for *x*.

```
y =
```

Simplify. The solution is .

3. Select a few more values of x and make a table to record the solutions.

GRAPHING A LINEAR EQUATION

- **Step 1 Rewrite** the equation in ______ form, if necessary.
- **Step 2 Choose** a few values of *x* and make a ______.
- Step 3 Plot the points from the table of values. A line through
these points is theof the equation.

-1

3

х

-3

Goal Graph horizontal and vertical lines.

VOCABULARY

Constant function

Example 3 Write an Equation of a Line

Copyright © McDougal Littell, a division of Houghton Mifflin Company.

Checkpoint Complete the following exercises.

Example 4 Write a Constant Function

Tree Trunks The graph shows the diameter of a tree trunk over a 6-week period. Write an equation to represent the diameter of the tree trunk for this period. What is the domain of the function? What is the range?

Solution

From the graph, you can see that the diameter was about ____ inches throughout the 6-week period. Therefore, the diameter *D* during this time *t* is $D = _$. The domain is _____. The range is _____

Graphing Lines Using Intercepts

Goal Find the intercepts of the graph of a linear equation and then use them to make a quick graph of the equation.

VOCABULARY		
x-intercept		
y-intercept		

Example 1 Find x- and y-Intercepts

Find the *x*- and *y*-intercepts of the graph of the equation -3x + 4y = 12.

Solution

To find the *x*-intercept, substitute for *y* and solve for *x*.

-3x + 4y = 12	Write original equation.
$-3x + 4(_) = 12$	Substitute for y.
= 12	Simplify.
x =	Solve for x.
To find the y-intercept, su	bstitute for x and solve for y .
-3x + 4y = 12	Write original equation.
$-3(_) + 4y = 12$	Substitute for <i>x</i> .
= 12	Simplify.
y =	Solve for y.
Answer The x-intercept is	The <i>y</i> -intercept is

Checkpoint Complete the following exercise.

1. Find the *x*-intercept and the *y*-intercept of the graph of the equation 2x - 5y = 10.

The Quick Graph process works because only two points are needed to determine a line.

MAKING A QUICK GRAPH

Step 1 Find the _____.

Step 2 Draw a coordinate plane that includes the _____.

Step 3 Plot the _____ and draw a line through them.

3

х

Checkpoint Complete the following exercise.

The Slope of a Line

The Slope Ratio

Goal	Find	the	slope	of	а	line.
------	------	-----	-------	----	---	-------

Example 1

VOCABULARY		
Slope		
0.000		

Find the slope of a ramp that has a vertical rise of 3 feet and a horizontal run of 18 feet. Let *m* represent the slope.

Example 2 Positive Slope

Tositive Slope

Find the slope of the line that passes through the points (1, 2) and (-2, -3).

Solution Let $(x_1, y_1) = (1, 2)$ and $(x_2, y_2) = (-2, -3)$.

Example 3 Zero Slope

Find the slope of the line passing through the points (-2, -3) and (4, -3).

Solution Let $(x_1, y_1) = (-2, -3)$ and $(x_2, y_2) = (4, -3)$.

Example 4 Undefined Slope

Find the slope of the line passing through the points (-1, -4) and (-1, -2).

Solution

Let $(x_1, y_1) = (-1, -4)$ and $(x_2, y_2) = (-1, -2)$.

Checkpoint Find the slope of the line passing through the points. Then state whether the slope of the line is positive, negative, zero, or undefined.

1. (-5, 2), (7, -2)	2. (0, 0), (-9, 0)
3. (-7, -8), (-7, 8)	4. (2, -4), (8, 6)

Direct Variation

Write and graph equations that represent direct variation. Goal

VOCABULARY		
Direct variation		
Constant of variation		

Write a Direct Variation Model Example 1

The variables x and y vary directly. One pair of values is x = 7and y = 21.

- **a.** Write an equation that relates *x* and *y*.
- **b.** Find the value of y when x = 4.

Solution

a. Because *x* and *y* vary _____, the equation is of the form

$$y = kx$$
Write model for direct variation. $_ = k(_)$ Substitute __ for x and __ for y. $_ = k$ Divide each side by __.Answer An equation that relates x and y is ____.b. $y = 3(_)$ Substitute __ for x. $y = _$ Simplify.Answer When $x = 4, y = __.$

Graph a Direct Variation Model Example 2 Graph the equation y = -x. **1. Plot** a point at the . **2.** Find a second point by choosing any value of x and substituting it into the equation to find the corresponding y-value. Use the value -3 for x. Write original equation. $\mathbf{y} = -\mathbf{x}$ y = -() Substitute for x. y = ____ Simplify. The second point is (,). 3. Plot the second point and draw a line -3through the and the second -13 x point.

Checkpoint The variables x and y vary directly. Use the given values to write an equation that relates x and y.

1. $x = 6, y = 30$	2. $x = 8, y = -20$	3. <i>x</i> = 3.6 , <i>y</i> = 1.8

Goal Graph a linear equation in slope-intercept form.

VOCABULARY				
Slope-intercept form				
Parallel lines				

SLOPE-INTERCEPT FORM OF THE EQUATION OF A LINE

The linear equation y = mx + b is written in **slope-intercept** form, where ____ is the slope and ____ is the *y*-intercept.

Example 1Find the Slope and y-InterceptFind the slope and y-intercept of -3x - y = 2.Solution Rewrite the equation in slope-intercept form.-3x - y = 2Write original equation. $-y = _ + 2$ Add _____ to each side. $_ =$ Divide each side by ____.m =and b =Answer The slope is ____. The y-intercept is ___.

4. Draw a line through the two points.

Checkpoint Find the slope and y-intercept of the equation.

1. $y = 4 - 3x$	2. $2x + y = -3$	3. $4y = 3x - 8$	

Graph the equation in slope-intercept form.

v

3

x

Example 3 Identify Parallel Lines

Checkpoint Which of the following lines are parallel?

6. line a: 4x - 3y = 6line b: -8x + 6y = 18line c: 4x + 3y = 8

Functions and Relations

Goal Decide whether a relation is a function and use function notation.

VOCABULARY	
Relation	
Function	
Function notation	
Linear function	

Example 1	Identify	Functions

Decide whether the relation is a function. If it is a function, give the domain and the range.

		5
а.	Input Output	b. Input Output 1 1 1 2 5 3 4 9
So	olution	
a. [']	The relation	a function because
-		·
b.	The relation	a function. For each there is
		. The domain of the function is
		The range is

Example 2 Use the Vertical Line Test

Use the vertical line test to determine whether the graph represents a function.

- a. _____ vertical line can be drawn to intersect the graph more than once. The graph ______.
- **b.** _____ vertical line can be drawn to intersect the graph more than once. The graph ______.

Checkpoint Decide whether the relation is a function. If it is a function, give the domain and the range.

Use the vertical line test to determine whether the graph represents a function.

Checkpoint Evaluate the function for the given value of the variable.

5. $f(x) = -7x + 3$ when $x = -3$	6. $f(x) = x^2 - 5$ when $x = 2$

Graph the linear function.

